VOLCII dH

OPERATINGAND SERVICEMANUAL

11710A
 DOWN CONVERTER

CERTIFICATION

The Hewlett-Packard Company certifies that this instrument met its published specifications at the time of shipment from the factory. Hewlett-Packard Company further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY AND ASSISTANCE

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of one year from the date of shipment. Hewlett-Packard will, at its option, repair or replace products which prove to be defective during the warranty period provided they are returned to Hewlett-Packard. Repairs necessitated by misuse of the product are not covered by this warranty. NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD IS NOT LIABLE FOR CONSEQUENTIAL DAMAGES.

Service Contracts or customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office.

HEWLETT-PACKARD SERVICE OFFICES

To obtain servicing information and order replacement parts, contact the nearest Hewlett-Packard Sales and Service Office in HP Catalog, or contact the nearest regional office listed below.

UNITED STATES:
CALIFORNIA
333 Logue Ave.
Mt. View, CA. 94303
or 6315 Arizona Place
Los Angeles, CA. 90045
GEORGIA
P.O. Box 105005

Atlanta, GA. 30348
ILLINOIS
5500 Howard Street
Skokie, IL. 60076
NEW JERSEY
W. 120 Century Road

Paramus, NJ. 07652

CANADA:
ONTARIO
Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive Mississauga, Ontario Canada L4V 1L9

EUROPE:
SWITZERLAND
Hewlett-Packard S.A.
Rue du Bois-du-Lan 7
P.O. Box 349

CH-1217 Meyrin 1 Geneva

AFRICA, ASIA, AND AUSTRALIA:
Hewlett-Packard Intercontinental 3200 Hillview Ave.
Palo Alto, California 94304

CENTRAL AND SOUTH AMERICA:
Hewlett-Packard Intercontinental 3200 Hillview Ave.
Palo Alto, California 94304

11710A DOWN CONVERTER

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1627A.

For additional important information about serial numbers, see paragraph on INSTRUMENTS COVERED BY MANUAL.

MODEL 11710A

POWER CABLE
(For HP Part Number refer to Figure 3)

FUSE 220/240 Vac (HP 2110-0479)

Figure 1. HP Model 11710A Down Converter and Accessories Supplied

1. GENERAL INFORMATION

2. This Operating and Service Manual contains information required to install, operate, test, adjust, and service the Hewlett-Packard 11710A Down Converter. Figure 1 shows the 11710A and all supplied accessories.

3. SPECIFICATIONS

4. Instrument specifications are listed in Table 1. These specifications are the performance standards or limits against which the instrument is tested.
5. Listed on the title page of this manual (below the manual part number) is a Microfiche part number. This number can be used to order 4-x 6 -inch microfilm transparencies of the manual. Each microfiche contains up to 96 photo-duplicates of the manual pages. The microfiche package also includes the latest Manual Changes supplement as well as pertinent Service Notes.

6. INSTRUMENTS COVERED BY MANUAL

7. Attached to the instrument is a serial number plate. The serial number is in the form: 0000 A 00000. It is in two parts; the first four digits and the letter are the serial prefix and the last five digits are the suffix. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix however, is assigned sequentially and is different for each instrument. The contents of this manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.
8. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates the instrument is different from those described in this manual. The manual for this newer instrument is accompanied by a yellow Manual Changes supplement. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.
9. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with the manual print date and part number, both of which appear on the manual title page. Complimentary copies of the supplement are available from Hewlett-Packard.
10. For information concerning a serial number prefix that is not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

11. DESCRIPTION

12. The Hewlett-Packard Model 11710A Down Converter is designed for use as an accessory for the HP Model 8640 Series Signal Generators. Frequency inputs in the range of 5.005 to 5.500 MHz are down converted to the 5 to 500 kHz range by the 11710 A . A straight-through selection feature allows the input to be passed unchanged through the 11710A.

Table 1. Specifications

```
Input:
    Down-Conversion Mode: }5.005\mathrm{ to }5.500\textrm{MHz}\mathrm{ at
        \leqslant0 dBm.
    Straight-Through Mode: 0.5 to 1024 MHz.
    Down-Converted Output:
    Frequency: 5 to 500 kHz
    Level Range: 0 to -107 dBm, 50\Omega (0.2V to 1 }\mu\textrm{V})\mathrm{ .
    Level Flatness: }\pm0.5\textrm{dB}\mathrm{ referred to }100\textrm{kHz}\mathrm{ .
    Level Accuracy: }\pm(1\textrm{dB}+\mathrm{ Input Level Accuracy).
    Harmonics: > 35 dBc.
    Intermixing Spurious: >60 dBc.
    5 MHz Local Oscillator Feedthrough: <-80 dBm.
```


Input:

```
Down-Conversion Mode: 5.005 to 5.500 MHz at \(\leqslant 0 \mathrm{dBm}\).
Straight-Through Mode: 0.5 to 1024 MHz .
```


Down-Converted Output:

```
Frequency: 5 to 500 kHz
Level Range: 0 to \(-107 \mathrm{dBm}, 50 \Omega(0.2 \mathrm{~V}\) to \(1 \mu \mathrm{~V})\).
Level Accuracy: \(\pm(1 \mathrm{~dB}+\) Input Level Accuracy).
Harmonics: \(>35 \mathrm{dBc}\).
Intermixing Spurious: \(>60 \mathrm{dBc}\).
5 MHz Local Oscillator Feedthrough: \(<-80 \mathrm{dBm}\).
```

Straight-Through Output:
Frequency: 0.5 to 1024 MHz .
Loss: $<1 \mathrm{~dB}$.
General Characteristics:
Power Requirements: $100,120,220,240 \mathrm{~V},+5$, $-10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 25$ VA maximum.
Weight: Net, 2.2 kg (4 lb 13 oz).
Dimensions: ${ }^{1} \quad 130 \mathrm{~mm}$ wide $\times 76 \mathrm{~mm}$ high $\times 279 \mathrm{~mm}$ deep (5-1/8 inches x 3-1/8 inches $x 11$ inches).
Operating Temperature Range: 0° to $55^{\circ} \mathrm{C}$.

[^0]
13. RECOMMENDED TEST EQUIPMENT

14. Test equipment required to test the down converter is listed in Table 2. Equipment other than the recommended models can be used provided the minimum specifications are satisfied.

15. INSTALLATION

16. Initial Inspection

17. Inspect the shipping container for damage. If the shipping container or packaging material is damaged it should be kept until the contents of the shipment have been checked mechanically and electrically. If there is mechanical damage or if the instrument does not pass the performance tests, notify the nearest Hewlett-Packard office. Keep the damaged shipping materials (if any) for the
carrier and a Hewlett-Packard representative to inspect. The HP office will arrange for repair or replacement at HP Option without waiting for claim settlement.

18. Power Requirements

19. The 11710 A Down Converter requires a power source with an output of $100,120,220$, or $240 \mathrm{~V},+5,-10 \%, 48$ to 440 Hz single phase. Power consumption is typically less than 12.5 VA .

20. Line Voltage Selection

21. Figure 2 provides instructions for line voltage and fuse selection. The Line Voltage Selection Card and fuse are factory installed for 120 Vac operation.

Table 2. Recommended Test Equipment

Instrument Type	Minimum Specifications	Suggested Model	Use*
Digital Voltmeter	Range: 0-15 Vdc Accuracy: $\pm 1 \%$	HP 3476A	A, T
Oscilloscope	Frequency Range: $\leqslant 5 \mathrm{MHz}$ Sweep: $\leqslant 0.1 \mu \mathrm{~s} / \mathrm{div}$	HP 1700B	A, T
Signal Generator	Range: 5 to 5.5 MHz Output: $>0 \mathrm{dBm}$ into 50Ω Drift: $<20 \mathrm{ppm} / 10 \mathrm{~min}$. Residual FM: $<50 \mathrm{~Hz}$ rms in 20 Hz to 15 kHz post-detection noise bandwidth.	HP 8640A or HP 8640B	P, A, T
Spectrum Analyzer:	Range: $0.45-100 \mathrm{MHz}$ Amplitude Calibration: Display Accuracy: $\pm 0.25 \mathrm{~dB} / \mathrm{dB}$ but not more than 1.5 dB over 70 dB dynamic range Flatness: $\pm 0.1 \mathrm{~dB}$ (5 kHz to 5 MHz) IF Gain Step Accuracy: $\pm 0.2 \mathrm{~dB}$ Vertical Reference Scale: $10 \mathrm{~dB} /$ division log, and linear display calibration Average Noise Level: $<-102 \mathrm{dBm}$ with 10 kHz IF bandwidth Spurious Responses: $>60 \mathrm{~dB}$ down for inputs for -40 dBm or less Span Width: 0-100 MHz	HP 141T/8552B/8553B	P, T
Frequency Reference	Output Frequency: $100 \mathrm{kHz}, 1 \mathrm{MHz}, 5 \mathrm{MHz}$, or 10 MHz Accuracy: $\pm 2 \mathrm{ppm}$	HP 5326A or HP 8640B (Time Base Output)	A

Operating voltage is shown in module window.

1. Open cover door and rotate fuse-pull to left.
2. Select operating voltage by orienting PC board to position desired voltage on top-left side. Push board firmly into module slot.
3. Rotate fuse-pull back into normal position and re-insert fuse in holders, using caution to select correct fuse value.

Figure 2. Line Voltage Selection

22. Power Cable

23. In accordance with international safety standards, this instrument is equipped with a three-wire power cable. When connected to an appropriate ac power receptacle, this cable grounds the instrument cabinet. The type of power cable plug shipped with each instrument depends on the country of destination. See Figure 3 for the part numbers of the power cable plugs available.

WARNING

The protection provided by grounding the instrument cabinet may be lost if any power cable other than the threepronged type supplied is used to couple the ac line voltage to the instrument.

24. Mating Connectors

25. Signal mating connectors required for the 11710 A are type N male connectors.

$8120-1369$	

Figure 3. Power Cable HP Part Nos, and Associated Plugs

26. Operating Environment

27. The operating environment should be within the following limitations:

Operating Environment (Cont'd)

Temperature: 0 to $55^{\circ} \mathrm{C}$
Humidity: Up to 95% relative
Altitude: Up to 4500 metres (15,000 feet)

28. Bench Operation

29. The instrument is equipped with plastic feet and a tilt stand for use on a bench.

30. Rack Mounting

31. The instrument can be rack mounted by using an adapter frame. The adapter frame is a rack frame that accepts several combinations of submodular units. For additional information, address inquiries to your nearest Hewlett-Packard office.

32. STORAGE AND SHIPMENT

33. Environment

34. The instrument should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment:

Temperature: -40 to $+75^{\circ} \mathrm{C}$
Humidity: Up to 95% relative
Altitude: Up to 7630 metres (25,000 feet)

35. Packaging

36. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also, mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.
37. Other Packaging. The following general instructions should be used for repackaging with commercially available materials:
a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard office or service center, attach a tag indicating the type of service required, return address, model number, and full serial number.)
b. Use a strong shipping container.
c. Use a layer of shock-absorbing material 70 to 100 mm (3 to 4 in .) thick around all sides of
the instrument to provide a firm cushion and prevent movement inside the container. Protect the control panel with cardboard.
d. Seal the shipping container securely.
e. Mark the shipping container FRAGILE to assure careful handling.
f. In any correspondence, refer to instrument by model number and full serial number.

38. OPERATION

39. Controls and indicators of the 11710A are explained in Figure 4. To operate the instrument, proceed as follows:
a. Verify that the power transformer primary of the 11710 A is matched to the line voltage by the Line Voltage Selection Card.
b. Check the 11710 A power fuse for correct rating.
c. Connect the RF IN and OUT connector cables.

CAUTIONS

Do not apply signal levels greater than +23 dBm into either the RF IN or RF OUT jacks.
In the Straight-Through mode, do not apply $D C$ or $R F$ signal levels into the $R F$ OUT jack which exceed the listed reverse power damage level of the RF signal source.
d. Connect the power cable to the power receptacle. Press the LINE switch and release. The switch should remain in, the lamp within the plastic lens should be lighted, and the cursor on the curved portion of the switch should indicate ON .

40. Operator Maintenance

41. Operator maintenance is limited to replacement of the rear panel fuse, the A2F1 Power Supply fuse and the front panel LINE switch lamp.
42. Rear Panel Fuse Replacement. The main ac line fuse is located on the rear panel next to the power cable jack (see Figure 2). To remove the fuse, first remove the line power cable from its jack. Slide the fuse compartment cover to the left, then pull the handle marked FUSE PULL and remove the fuse.

LINE Switch. Controls primary power. Lights when instrument is on.

RF IN Connector. Signal input type N female connector
$-500 \mathrm{kHz} / .5-1024 \mathrm{MHz}$ Selector Switch. When set to $5-500 \mathrm{kHz}$ selects down conversion function. When set to $.5-1024 \mathrm{MHz}$ selects straight-through function.

RF OUT Connector. Signal output type N female connector.

Power Module Assembly.

6 Receptacle. Couples transformer primary to line voltage via power cable.
1 Line Voltage Selection Card. Matches transformer primary to line voltage. See Figure 2.
(8) Fuse. A 250 mA fuse is used at $110 / 120 \mathrm{Vac}, 175 \mathrm{~mA}$ at $220 / 240 \mathrm{Vac}$.
9 Fuse Pull Handle. Mechanical interlock; fuse must be removed before extraction of Line Voltage Selection Card.
10 Window. Safety interlock; fuse cannot be removed while power cable is connected to power receptacle.

Figure 4. Front and Rear Panel Controls, Connectors, and Indicators

Operator Maintenance (Cont'd)

CAUTION

Be sure to select the correct fuse rating for the selected line voltage. Fuse ratings are listed on the fuse compartment.
43. A2F1 Power Supply Fuse Replacement. To replace power supply fuse A2F1, proceed as follows:
a. Remove power cable from rear of instrument.
b. Remove instrument top cover.
c. Remove board A2 from printed circuit board connector.
d. Replace 1/2A fuse on board.
e. Reinsert board A2 into connector.
f. Replace instrument top cover.
44. LINE Switch Lamp Replacement. Figure 5 shows how to replace the lamp located in the LINE power switch.

45. PERFORMANCE TESTS AND ADJUSTMENTS

46. Test equipment and accessories required to perform maintenance are listed in Table 2. Equipment other than the recommended models can be
used provided the minimum specifications are satisfied.
47. The test and adjustments to be performed are presented in the following order:
a. Performance Test on Down-Converted Signal.
b. Local Oscillator Frequency Adjustment
c. Power Supply Adjustment.

POWER LAMP REPLACEMENT

1. Remove lens by pulling straight out.
2. Replace Iamp.
3. Yo replace lens, align guide with notch in receptacle. Push straight in.

Figure 5. LINE Switch Lamp Replacement

PERFORMANCE TESTS

48. Performance Tests on Down-Converted Signal

SPECIFICATIONS: Frequency: 5 to 500 kHz
Level Range: 0 to $-107 \mathrm{dBm} 50 \Omega(0.2 \mathrm{~V}$ to $1 \mu \mathrm{~V})$
Level Flatness: $\pm 0.5 \mathrm{~dB}$ referred to 100 kHz
Level Accuracy: \pm (1 dB + Input Level Accuracy)
Harmonics: $>35 \mathrm{dBc}$
Intermixing Spurious: $>60 \mathrm{dBc}$
5 MHz Local Oscillator Feedthrough: $<-80 \mathrm{dBm}$

REFERENCE: Figure 11.

DESCRIPTION: In addition to measuring the parameters specified above, adjustments are made to the output level and 5 MHz balance if needed. All measurements are made by observing the down-converted output on a spectrum analyzer.

48. Performance Tests on Down-Converted Signal (Cont'd)

Figure 6. Performance Test Setup
TEST EQUIPMENT: $\quad \begin{aligned} & \text { Signal Generator HP 8640A, 8640B or 8640M } \\ & \text { Spectrum Analyzer HP 8553B/8552B/141T }\end{aligned}$
PROCEDURE: a. Connect equipment as shown in Figure 6. Set Down Converter selection switch to $.5-1024 \mathrm{MHz}$.
b. Set signal generator controls as follows:
Frequency
Level 5.100 MHz
AM 0 dBm
FM Off
c. Set spectrum analyzer controls as follows:

Resolution Bandwidth . . . 1 kHz
Frequency Span $50 \mathrm{kHz} /$ division
Center Frequency 5.1 MHz
Input Attenuation 40 dB
Linear Sensitivity $100 \mathrm{mV} /$ division
Display Smoothing Minimum (Off)
d. Locate 5.1 MHz signal on spectrum analyzer. Fine adjust linear sensitivity to bring signal to fifth graticule line from bottom.
e. Set Down Converter's selection switch to $5-500 \mathrm{kHz}$. Tune analyzer center frequency to 250 kHz . The 100 kHz signal should be within ± 0.3 divisions of the fifth line ($\pm 0.5 \mathrm{~dB}$). If it is not, adjust A1R12 (Gain) to bring signal to reference line.

$$
4.7
$$

\qquad 5.3 divisions
f. Tune generator frequency slowly through 5.005 to 5.5 MHz range while observing signal on analyzer display. For observing low frequencies, it may be desirable to adjust analyzer's frequency span and center frequency (but not resclution bandwidth). Signal level should be within ± 0.3 divisions of level observed at 100 kHz and ± 0.6 divisions of the fifth graticule line over the range to 500 kHz .
Flatness: -0.3 +0.3 divisions
Accuracy: -4.4 \qquad +5.6 divisions

PERFORMANCE TESTS

48. Performance Tests on Down-Converted Signal (Cont'd)

PROCEDURE: (Cont'd)
g. Set generator's output level to -87 dBm and frequency to 5.1 MHz . Set spectrum analyzer's frequency span to 5.1 MHz , input attenuation to 0 dB , and linear sensitivity to $2 \mu \mathrm{~V} /$ division.
h. Repeat steps d and e.
i. Set spectrum analyzer's input attenuation to 40 dB and vertical reference level to 0 dBm (log). Set generator's output level to 0 dBm .
j. Adjust spectrum analyzers vertical reference level to bring signal to top graticule line. Tune generator frequency through 5.00 to 5.5 MHz range while observing second and third harmonics on analyzer display. If desired, adjust analyzer's frequency span, center frequency, and resolution bandwidth. Harmonics should be greater than 35 dB below fundamental.
k. Set spectrum analyzer's resolution bandwidth to 10 kHz , frequency tune to 10 MHz , and frequency span to 2 MHz per division. Tune signal generator to 5.5 MHz . All signals except 500 kHz fundamental and its harmonics should be greater than 60 dB below the fundamental.

$$
60 \mathrm{dBc}
$$

\qquad

1. Disconnect RF input to Down Converter. Set spectrum analyzer's resolution bandwidth to 3 kHz , frequency tune to 5 MHz , frequency span to 0.2 MHz per division, and input attenuation to 0 dB . Fine tune analyzer to locate 5 MHz signal. Signal level should be less than -80 dBm . If it is not, adjust A1R5 (5 MHz Null) for lowest signal level.
\qquad
$-80 \mathrm{dBm}$

NOTE

If the signal level cannot be adjusted properly in step l, monitor signal at A1TP2 and adjust for lowest signal level. Repeat step l and verify output is within specification.

ADJUSTMENTS

49. Local Oscillator Frequency Adjustment

REFERENCE: Figure 11.
DESCRIPTION: An oscilloscope, triggered by an external reference, is used to set the local oscillator (LO) frequency. If the generator to be used with the Down Converter has a counter readout, the LO is adjusted using the generator's reference. Otherwise, the frequency is adjusted to 5 MHz using a suitable frequency standard.

ADJUSTMENTS

49. Local Oscillator Frequency Adjustment (Cont'd)

Figure 7. Local Oscillator Frequency Adjustment Test Setup
TEST EQUIPMENT: Oscilloscope HP 1700B
Frequency Reference . . . HP 8640B or 5326A
PROCEDURE: a. Remove top cover. Allow equipment to warm up for two hours.
b. Connect equipment as shown in Figure 7. Set oscilloscope to display 5 MHz LO signal triggered externally from the frequency reference. Set horizontal scale for 0.1μ s per division.
c. Adjust LO frequency adjustment (Xtal Adj) on A1Y1 for a stationary waveform.

NOTE
Movement of the waveform to the right one division per second means that the down converter's frequency is low by 0.1 ppm .
50. Power Supply Adjustment

REFERENCE: Figure 13.
DESCRIPTION: The power supply is adjusted for $+12.0 \pm 0.1$ Vdc.
TEST EQUIPMENT: Digital Voltmeter HP 3476A
PROCEDURE: a. Connect voltmeter to + end of A2C5(B+).
b. Adjust A2R9 VOLT ADJ for voltmeter reading of between +11.9 to +12.1 Vdc.

51. REPLACEABLE PARTS

52. Table 3 lists all replaceable parts in reference designator order. Table 4 contains the names and addresses that correspond to the manufacturer's code numbers.

53. ORDERING INFORMATION

54. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.
55. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

56. SERVICE

57. Service instructions consist of principles of operation, troubleshooting, and repairs.

58. Principles of Operation

59. A block diagram of the 11710A Down Converter is shown in Figure 9. Input power is applied to Power Supply A2 through switch S2. Power Supply A2 consists of a voltage rectifier and regulator circuit. This circuit provides the regulated +12 Vdc power.
60. Converter-amplifier A1 down-converts the input signal. Relays K1 and K2, and range switch S1 select the output signal range. To select the down-converted signal, switch S1 is set to the $5-500 \mathrm{kHz}$ position. In this position the +12 Vdc is applied to converter-amplifier A1 and relay K2. The closed contacts of K1 connect the output of A1 to the RF OUT connector (J2) via cables W2 and W5. Since relay K1 is not energized when switch S 1 is set to the $5-500 \mathrm{kHz}$ position, the open contacts connect the unit RF IN connector (J1) to the input of A1 via cables W3 and W1. The input signal is mixed with the 5 MHz local oscillator and the down-converted signal is then amplified and filtered. Only the difference frequency is allowed to pass through the filter to the output.
61. When range switch $S 1$ is set to the $0.5-$ 1024 MHz position, +12 Vdc is applied to relay K1 but not to converter-amplifier A1 or relay K2. Converter-amplifier A1 is disabled and bypassed and the input signal is routed directly to the output connector via cables W3, W4, and W5.
62. A schematic diagram of converter-amplifier A1 is shown in Figure 11. Note that there are three adjustments: A1Y1 (Xtal Adj), A1R12 (Gain Adj), and A1R5 (5 MHz Null Adj). These adjustments are set as specified in the Performance Test and Adjustment procedures.
63. A schematic diagram of the power supply circuit (A2) is shown in Figure 13. The power supply is a series pass type with Q1 being the series pass transistor. Comparison amplifier A2Q4 and Q5 compares the divided down supply voltage against the reference A2VR2 and drives Q1 through A2Q2 to bring the base voltage of A2Q5 equal to the base voltage of A2Q4. A2Q3 is a current limiting transistor that is normally off. If the supply current is large enough, the voltage drop across A2R5 will turn A2Q3 on. This in turn shuts A2Q2 and Q1 off. A2VR3 and A2Q6 form a crowbar to protect the output from voltages that are too high. If the output exceeds the breakdown voltage of A2VR3, it conducts and fires SCR A2Q6 which shorts the output and initiates current limiting. Variable resistor A2R9 is the output VOLT ADJ control and is set as specified in the Performance Test and Adjustment procedures.

64. Troubleshooting

65. 11710A Down Converter circuits are conventional and are not complicated. Significant circuit stage functions and operation levels are identified in the schematic diagrams. Therefore, troubleshooting can be accomplished by using all the information in the Principles of Operation and the schematics and by conducting the Performance Test and Adjustment procedures. By using this approach, the user can quickly isolate a malfunction to a chassis-mounted or PC board-mounted component.

66. Repair

67. In some instances, repair consists of merely making the required adjustments to bring the instrument up to specification levels. In other cases, repair requires the replacement of malfunctioning component with a known good component. Assembly and chassis component locations for the instrument are shown in Figure 14. Parts locations for PC boards A1 and A2 are shown in Figure 10 and 12 , respectively. To gain access to the chassismounted components and PC boards, remove the top cover. The side panels and bottom cover are also removable (see Figure 8). The A1 Assembly may be extended by use of the 12 -pin extender board located inside the chassis. A 30 -pin extender board (HP 08640-60036) useful for extending the A2 Assembly is available from your nearest Hewlett-Packard office.

Table 3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
41	11710-60010	1	CONVERTER-AMPLIFIER BGARD ASSEMELY	28480	11710-60010
4101	0160-0084	3	CAPACITOR-FXD - 1UF +-20x SOnVDC CER	28080	0160-0084
4102	0180-1796	1	CADACITOR-FXD 15UF+-10X 20VOC TA	56289	15001569902082
A1C3	0160-0127	2	CAPACITOR-FXD 1UF +-20\% 25 NVDC CER	28480	0160-0127
A1Ca	0160-3879	,	CAPACITOR-FXD . OIUF t-20X 100WVOC CER	28480	0160-3879
Alcs	0160-4089		CAFACITOR-FXD .luF +-20x Sonvoc cer	28980	0160-0080
Alct	0180-0228	3	CAPACITOA-FXO 2zUF+-10X 15VDC TA	56289	1500226×901582
A1C7	0160-0547	3	CAFACITOR-FXD 04UF +-20× 1000 WVAC CER	28480	0160-0597
A1ce	0160-4089		CAPACITOR-FXD AUF +-20x 50WVOC CER	28480	0160-4084
A1c9	0180-0228		CAFACITOR-FXD 22UF+-10x 15VOC TA	56289	1500226×901582
A1C10	0180-0491	2	CAPACITOR-FXD 10UF4-20X 25VDC TA	0049 K	1368-E-106-M-025-43
A1c11	0160-0127		CAPACITOR-FXD IUF +-20X 25NVDC CER	28480	0160-0127
A1C12	0180-0991		CAPACITOR-FXD 10UF+-20x 25VDC TA	004ak	1368-6-106-M-025-A
A1C13	0160-0572	1	CAPACITORAFXD 2200PF +-20x 100 WVDE CEA	28480	0160-0572
A1ci4	0160-0155	2	CAPACITOR-FXD 3300PF +-10X 200nVOC POLYE	56289	292P33292
A1C15	0160-0160	1	CAPACITOR-FXD EZOOPF +-10x 200wVDC POLYE	56289	292P82292
A1C16	0160-0155		CAPACITOR-FXO 3300PF +-10X 200wVdC POLYE	56289	292P33292
$\begin{aligned} & \text { AJ1 } \\ & \text { A1J2 } \end{aligned}$	$\begin{aligned} & 1250-0835 \\ & 1250=0835 \end{aligned}$	2	CONNECTOR-RF SMC M PC 50-ONM CONNECTOR-RF SMC M PC 5O-OMM	$\begin{aligned} & 98291 \\ & 98291 \end{aligned}$	$\begin{aligned} & 50-051-0000 \\ & 50-051-0000 \end{aligned}$
4161	9140-0114	1	COIL-MLD 10UN $10 \times 0=55.1550 \times .375 \mathrm{LG}$	99800	1537-36
A1L2	9100-1621	2	COIL-MLD 18UH 10x 0.75.1550x.375LG	24226	151182
4113	9100-1621		COIL-MLD 18UN 10x $0 \times 75.1550 \times .375 \mathrm{LG}$	29226	151182
4101	1853-0050	1	TRANSIGTOR PNP GI TO-18 POEJGOMM	28.880	1853-0050
1102	$1854-0022$ $1205-0011$	2	TRANSISTOR NPN SI TO-39 POE700Mm HEAT SINK TO-5,70-39-PKG	07263 28980	$\begin{aligned} & 317843 \\ & 1205-0011 \end{aligned}$
A1R1	0757-1060	1	RESISTOR 196 1\% .5m F TC=0t-100	19701	MF7C1/2-T0-196R-F
AlRE	0690-7260	3	RESISTOR 10K ix:05n F TC=0+-100	29596	C3-1/8-70-1002-6
A1R3	0698-7236	1	RESISTOR IK $1 \times .05 \mathrm{NF}$ FC=0+-100	24596	C3-1/8-10-1001-G
A18a	0698-7260		RESISTOR 10K 1\%,05w F TC=04-100	24596	c3-1/8-10-1002-6
A1月S	2100-3054	1	RESISTOR-TRMR SOK 10X C SIOE-AOJ 17-TRN	32947	3006P-1-503
A1R6	0698-7221	1	RESISTOR 237 1x.05w F TC=0*-100	24506	c3-1/8-10-237R-6
4187	0698-7229	,	RESISTOR 511 $1 \times$. 0 SW F TC=0 +100	20506	C3-1/8-10-511R-6
4188	0698-7198	2	RESISTOR 26.1 1X.05w F TCaOt-100	24546	C3-1/8-100-26R1-G
A1R9 A1810	$0698-7198$ $0698-7260$			24546 24546	$\begin{aligned} & C 3-1 / 8-100-26 R 1-G \\ & C 3-1 / 8-10-1002-G \end{aligned}$
A1R11	0698-723a	1		20506	C3-1/8-10-825R-G
M1212	2100-3109	1	hesigtor-trma 2k lox e SIDE-ADJ 17-TAN	32997	3006P-1-202
A1R13	0698-7205	1	RESISTOR 51.1 1x.05w F TC=0¢-100	20546	C3-1/8-T00-51R1-6
11819	0698-7248	1	RESISTOR 3.16x 1x.05m F TCEO+-100	24506	c3-1/8-10-3161-6
A1R15	0698-7239	1	RESISTOR 1.33K İ.05NF TCEOP-100	24546	c3-1/8-10-1331-6
11816	0757-0279	1	RESISTOR 3. 16 K 1x, 125W F TC=0 -100	20546	Ca-1/8-T0-3161-F
A1R17	0698-3443	1	RESISTOR 287 1x.125w F TC=0.-100	24506	Ca-1/8-10-287R-F
A1F18 A1F19	$0757-0416$ $0757-1000$	3	RESISTOR 511 1X, 125 FW F TCOO+-100	20546 19701	C4-1/8-10-511日-F
A1F19 A1220	$0757-1000$ $0757-1000$	2		$\begin{aligned} & 19701 \\ & 19701 \end{aligned}$	MF7C1/2-T0-51R1-F MF7C1/2-T0-51R1-F
$\begin{aligned} & \text { ATPI } \\ & \text { A1TP2 } \end{aligned}$	$1251-0600$ $1251-0600$	2	CONTACT-CONN U/W-PDST-TYPE MALE DPSLDR CONTACT-CONN U/W-POST-TYPE MALE DPSLDR	28480 28980	$\begin{aligned} & 1251-0600 \\ & 1251-0600 \end{aligned}$
AlU1	$\begin{aligned} & 1820-0927 \\ & 1200-0196 \end{aligned}$	1	IC ME 1996 MOOLLATOR SCCKET-IC 10-CONT DIP-SLOR-TERMS	$\begin{aligned} & 09713 \\ & 91506 \end{aligned}$	$\begin{aligned} & \text { MC } 1496 G \\ & 8058-1 G 31 \end{aligned}$
A1VR1	1902-0041	1	OIODE-2NA 5.11V 5x 00-7 POE.an TCime.009x	15818	CO 35622
AY1	1813-0063	1	IC XTAL OSC	28480	1813-0063
42	11710-60002	1	boaro assembly, power supply	28480	11710-60002
$12 C 1$ $12 c 2$	$\begin{aligned} & 0150-0024 \\ & 0180=0228 \end{aligned}$	1	CAPACITOR-FXD .02UF $+80-20 x$ bOOWVOC CER CAPACIIOR-FXD 22UF+-10\% 15VDC TA	$\begin{aligned} & 71590 \\ & 56289 \end{aligned}$	$\begin{aligned} & 00203-25 U-480-20 \\ & 1500226 \times 9015 \mathrm{E} \end{aligned}$
A2c3	0160-0162	1	CAPACITOR-FXD O22UF $+10 \pm 200 w V O C$ POLYE	56289	292P22392
A2Ca	0180-0116	1	CAPACITOR-FXO S.BUF* $=10 \times 35 V D C$ TA	56289	1500685×903582
42 cs	0180-1819	1	CAPACITOR-FXO 100UF+75-10x 50VOC AL	56289	$30010750500 \mathrm{H2}$
$\begin{aligned} & \text { A2CR1 } \\ & \text { A2CR2 } \end{aligned}$	$\begin{aligned} & 1901=0159 \\ & 1901=0159 \end{aligned}$	4		04713 04713	SA1358-4 SR1358-4
A2CR3	1901-0159			04713	SR1358-4
A2CRA	1001-0159		OIODE-FWR RECT AOOV 750 MA DO-A1	04713	SR1358-4
AzCRS	1901-0025	2	OIDOE-GEN PRP $100 \mathrm{~V} 200 \mathrm{MA} \mathrm{OO-7}$	28480	1901-0025
42CR6	1901-0025		DIODE-GEN PRP 100V 200ma 00.7	28480	1901-0025
A2F 1	$\begin{aligned} & 211000012 \\ & 2110-0289 \end{aligned}$	1	FUSE, 5A 250V FASt-BLO 1.25X. 25 UL IEC FUSEHOLDER-CLIP TYPE ,25FUSE	$\begin{aligned} & 75915 \\ & 28480 \end{aligned}$	$\begin{aligned} & 312.500 \\ & 2110-0269 \end{aligned}$

Table 3. Replaceable Parts (Cont'd)

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
4201 4202	$1853-0012$ 18500022	1	trangiston pnp 2nzqoal si to-5 porgoomm TRANSISTOQ NPN SI TO-39 PD=700Mm	01295 07263	2N29044
A203	1050-0071	3	TRANSISTOR NPN SI PDI300Mm FiEzoommz	28400	1854-0071
A29a	1854-0071		TRANSISTOR NPN SI PDE 300 Mm FTE 200 MHz	28480	1854-0071
4205	1850-007\%			28480	1854-0071
4206	1880-0012	1	Thyristor-scr jedec en 3528	02735	2N3528
A2R1	0698-3308	,	RESISTOR 9.64K it . 5 m F TCa04-100	91637	MFF-1/2-10
1282	0757-0278	2	AESISTOR L.7AK 1\% .125w F TC=0 - 100	20546	Ca-1/a-T0-1781-F
4283	0757-0416		QESISTOR S11 1x -125m FTC=0+-100	24540	C4-1/日-T0-511R-F
4284	0757-0839	1	RESISTOR IOK 1\% . 5 NF F TC=0 -100	19701	MF7C1/2-T0-1002-F
A2R5	0811-1666	1	RESISTOR $15 \mathrm{5Y}$ 2N PM TC=0+-800	75042	OnH2-180-J
4286	0757-0817	1	RESISTOR 750 1\% [5NF TCEO+-100	19701	MF7C1/2-10-751-F
${ }^{\text {A2R }} 7$	0698-0083	1		20596	Ca-1/8-10-1961-F
${ }^{\text {A2R8 }}$	$0698-3440$ $2100-1758$	1	RESISTOR 1961%. 125 SH FTCEO+-100	24546	C4-1/8-T0-196R-F
ARAR ARIo	$2100-1758$ $0757-0416$	1	RESISTDR-TRMA $1 K$ 5x wW SIDE-ADJ I-TURN RESISTOR 511 $1 x$. 125 F F TC=0 $0=100$	68027 24546	$\begin{aligned} & C T-106=9 \\ & C 4=1 / 8-T 0-511 R-F \end{aligned}$
A2R11 AR12	-0757-1094	1	RESISTOR 1.47K 1\% . 125\% F YC=0.-100 RESISTOR 1.78K 18 . 125 F F TC=0.-100	$\begin{aligned} & 24546 \\ & 20540 \end{aligned}$	$\begin{aligned} & C 4=1 / 8-T 0-1471-F \\ & C A=1 / 8-70-1781=F \end{aligned}$
A2VR1 athre	$1902-3036$ $1902-0761$	1		04713 04713	S2 $20930-380$
A2vR3	1902-0202	1	DIODE-2NR 15V 5x Do-15 PDEIM TC=4.057x	28480	1002-0202
43	096000043	1	poner module assemely	28480	0960-0043
A3.1			NSR, P/O A3		
A3P1	5020-8257	1	line valtage selection card	28480	5020-8257
			chassis components		
c1	0180-2181	1	CAPACITOR-FXO 1300UF+75-10Y 50VOC AL	56289	360132G0504a24
CR1	$1901-0033$ $1901-0033$	2	DIODE-GEN PRP IOOV 200MA DO-7 DIODE-GEN PRP 180 V 200MA 00-7	28480 28480	$\begin{aligned} & 1901-0033 \\ & 1901-003 \end{aligned}$
$F 1$	2110-0008	1	fuge . 25a 250y fasi-blo $1,25 \times 25$ UL IEC (FOR 100/120V OPERATION)	75915	312.250
F1	2110-0979	1	FUSE .175A 250V FAST-aLO $1.25 x .25$ UL (FOR 2zorzuov operation)	75915	312.175
$\begin{aligned} & \mathrm{J} 1 \\ & \mathrm{~J} 2 \end{aligned}$			$\begin{aligned} & \text { NSR, P/O W3 } \\ & \text { NBR, P/O W5 } \end{aligned}$		
k 1 K 2	310600009 $3106-0009$	2	gnitch, coaxial gpot SmITCH, COAXIAL SPDT	74868 74868	$\begin{aligned} & 315-10053-2 \\ & 315-10053-2 \end{aligned}$
MP1	0340-0486	1	INSULATOR-COVER TO- ${ }^{\text {3 }}$ - ${ }^{\text {33-TMK }}$	0011 J	A22-2003
$M_{\text {MP3 }}$	5060-519	1	DECK, MAIN	28480 28480	$5060-5914$ 1171000003
HPa	11710-00005	1	extender board bracket	28480	11710-00005
MPS	0590-0505	1	Nut, knlrled 5/8-2a unef-2b thread	73703	TD-801
HP6	1210-0013	1	CLAMP-CAP 1.375-DIA stL (FOR C1)	56289	4586-974
MP7 MP	$\begin{aligned} & 5020-0700 \\ & 11710-20006 \end{aligned}$	1	SPACERACAEINET ADMESIVE, INSULATOR (BOTTOM COVER)	28480 28980	$\begin{aligned} & 5020-0700 \\ & 11710-20006 \end{aligned}$
01	$\begin{aligned} & 1859-0063 \\ & 1200-0093 \end{aligned}$	1	TRANSISTOR NPN 2N3055 SI TO-3 PDIIISH insulator-xstr aluminum	$\begin{aligned} & 28980 \\ & 76530 \end{aligned}$	$\begin{aligned} & 1054-0064 \\ & 322047 \end{aligned}$
81	0698.3049	1	RESISTOR 28.7K 1\% .125w F TC=0e-100	24546	C0-1/8-T0-2872-F
31 82	$3100-3309$ 310101395	1	Snitch-RtRy gpot-ns .ale-cta-spcg SnITCMAPB DPDT-DE ALTNG 10.5A 250VAC	$\begin{aligned} & 28 a 80 \\ & 00501 \end{aligned}$	$\begin{aligned} & 3100-3389 \\ & 53-67280-121 / A 1 H \end{aligned}$
T1	9100-3915	1	transformer, poner	28480	9100-3915
41	11710-60009	1	CABLE ASGEMELY, COAX SWITCH TO MIXEA	28480	11710-60000
12	11710-60003	1	Cable assemely, filter to coax switch	28480	11710-60003
${ }^{63}$	11710-20003	,	CABLE, RF, IN	28480	11710-20003
Wa 1	$11710-20005$ $11710-20004$	1	CABLE, RF inteaconnect	28980 28980	$11710-20005$ $11710-20004$
146 1	$\begin{aligned} & 0120-1378 \\ & 11710-60007 \end{aligned}$	1	Cable assy 1 bahg 3-Choct jgk-jkt . 25-00 CABLE ASSEMBLY, PRIMARY WIRING	$\begin{aligned} & 28980 \\ & 28480 \end{aligned}$	$\begin{aligned} & 8120-1378 \\ & 11710-60007 \end{aligned}$
$\begin{aligned} & x A_{1} \\ & \times A 2 \end{aligned}$	$\begin{aligned} & 1251-0198 \\ & 1251-0159 \end{aligned}$	1	CONNECTOA-PC EDGE G-CONT/AOM z-RONS CONNECTOR-PC EDGE 15-CONT/AOM 2-ROMS	$\begin{aligned} & 71785 \\ & 71785 \end{aligned}$	$\begin{aligned} & 251-06-30-261 \\ & 251-15-30-261 \end{aligned}$

Table 4. Code List of Manufacturers

Mfr Code	Manufacturer Name	Address	Zip Code
69027 00115	neohm	englano	
0044 x	KEMET ME		
00501 01295	TELUMINATED PRODUEIS INC	ANAMEIM CA	${ }_{7} 92581$
02735	RCA CORM SOLID STATE OIV	SOMLEPVILLE NJ	O2876
00713 09736	MOIOROLA SEMICONOUCIOR PRODUCTS FAICHIL SEMICONOUCIOR OIV	phountain viea ca	94000
15818	TELECONE SEMICONOUCTOR	MOUNTAN VIEn Ca	40040
19701 24226	MEPCO/ELECTRA COHP GOMANDA ELECTMONICS CORP	MINERAL MELLS	76070 18070
24546	CORNING GLASS MORS (GAFAOFORO)	GPADFORDPA	16701
28480 32097	MEALETT-PACKARD Co corporate ho Bouncs inc taimpoi proo oiv		92307
56289	spaague electric co		01207
71190 71765	Centralab elek oiv gloee inion inc	ELK GROVE VILLAGE IL	60007
73743	FISCHER SPECIAL Mfg co	cincinnati om	45206
74868 7504 7	NOM/E DESERIPITION FOR THIS MFG NUMEER	philadelphia pa	19105
75915	ITTELFUSE INC	DES PALNES ${ }^{\text {dit }}$	60016
76530 9,1506	TRH ELEK CMPNT CINCH-MONADNOCK OIV		02703
91637	dale electronics inc	columbus NE	-68801
998800	Sealectro corp in delevan oiv	mamaroneck ny	14052

Figure 8. 11710A Cabinet Parts

Figure 9. Down Converter - Block Diagram

Figure 10. Converter-Amplifier A1 Component Locations

Figure 11. Converter-Amplifier A1 Schematic Diagram

A2 ASSEMBLY

Figure 12. Power Supply A2 Component Locations

Figure 14. Down-Converter Top Internal View

HEWLETT hp PACKARD

DOWN CONVERTER

MANUAL IDENTIFICATION
Model Number: 11710A
Date Printed: October 1976
Part Number: 11710-90002

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

To use this supplement:
Make all ERRATA corrections
Make all appropriate serial number related changes indicated in the tables below.

Serial Prefix or Number Make Manual Changes	
	$1734 \mathrm{~A}, 1804 \mathrm{~A}$

Serial Prefix or Number Make Manual Changes -	

NEW ITEM

ERRATA

Page 1, Table 1:
Under General Characteristics replace Power Requirements with the following:
Power Requirements: 100 or 120 volts ($+5 \%,-10 \%$) from 48 to 440 Hz ; or 220 or 240 volts ($+5 \%,-10 \%$) from 48 to $66 \mathrm{~Hz} .25 \mathrm{~V} \cdot$ A maximum.

Page 2, paragraph 19:
Change the first sentence to read:
The 11710 A Down Converter requires a power source with an output of 100 or 120 volts ($+5 \%,-10 \%$) from 48 to 440 Hz ; or 220 or 240 volts $(+5 \%,-10 \%)$ from 48 to 66 Hz single phase.

Page 3, Figure 2:
Add the following after the third sentence:

WARNING

To avoid the possibility of hazardous electrical shock, do not operate this instrument at line voltages greater than 126.5 Vac with line frequencies greater than 66 Hz (leakage currents at these line settings may exceed 3.5 mA).

Page 11, Table 3:
A1 Q1. For recommended replacement see Change 1.

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

ERRATA (Cont'd)

Page 12, Table 3:
Add MP9 7120-7032 LABEL, WARNING.

CHANGE 1

Page 11, Table 3:
Change A1Q1 to 1853-0451 TRANSISTOR PNP 2N3799 SI TO-18 PD = $\mathbf{3 6 0} \mathrm{MW}$.

Page 15, Figure 11:
Change the part number for A1Q1 to 1853-0451.

[^0]: ${ }^{1}$ Dimensions are for general information only. If dimensions are required for building special enclosures, contact your local Hewlett-Packard Office.

